Equivalence of stochastic equations and martingale problems
نویسنده
چکیده
The fact that the solution of a martingale problem for a diffusion process gives a weak solution of the corresponding Itô equation is well-known since the original work of Stroock and Varadhan. The result is typically proved by constructing the driving Brownian motion from the solution of the martingale problem and perhaps an auxiliary Brownian motion. This constructive approach is much more challenging for more general Markov processes where one would be required to construct a Poisson random measure from the sample paths of the solution of the martingale problem. A “soft” approach to this equivalence is presented here which begins with a joint martingale problem for the solution of the desired stochastic equation and the driving processes and applies a Markov mapping theorem to show that any solution of the original martingale problem corresponds to a solution of the joint martingale problem. These results coupled with earlier results on the equivalence of forward equations and martingale problems show that the three standard approaches to specifying Markov processes (stochastic equations, martingale problems, and forward equations) are, under very general conditions, equivalent in the sense that existence and/or uniqueness of one implies existence and/or uniqueness for the other two. MSC 2000 subject classifications: 60J25, 60H10, 60J35
منابع مشابه
Optimal control versus stochastic target problems: An equivalence result
Within a general abstract framework, we show that any optimal control problem in standard form can be translated into a stochastic target problem as defined in [17], whenever the underlying filtered probability space admits a suitable martingale representation property. This provides a unified way of treating these two classes of stochastic control problems. As an illustration, we show, within ...
متن کاملMartingale problems for some degenerate Kolmogorov equations
We obtain Calderón-Zygmund estimates for some degenerate equations of Kolmogorov type with inhomogeneous nonlinear coefficients. We then derive the well-posedness of the martingale problem associated with related degenerate operators, and therefore uniqueness in law for the corresponding stochastic differential equations. Some density estimates are established as well.
متن کاملStochastic functional population dynamics with jumps
In this paper we use a class of stochastic functional Kolmogorov-type model with jumps to describe the evolutions of population dynamics. By constructing a special Lyapunov function, we show that the stochastic functional differential equation associated with our model admits a unique global solution in the positive orthant, and, by the exponential martingale inequality with jumps, we dis...
متن کاملSelf-consistent estimation of censored quantile regression
The principle of self-consistency has been employed to estimate regression quantile with randomly censored response. It has been of great interest to study how the self-consistent estimation of censored regression quantiles is connected to the alternative martingale-based approach. In this talk, I will first present a new formulation of self-consistent censored regression quantiles based on sto...
متن کاملMartingale Representation Theorem for the G-expectation
This paper considers the nonlinear theory of G-martingales as introduced by Peng in [16, 17]. A martingale representation theorem for this theory is proved by using the techniques and the results established in [20] for the second order stochastic target problems and the second order backward stochastic differential equations. In particular, this representation provides a hedging strategy in a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010